How to calculate the sum of all Fibonacci numbers between two left and right indices in Swift

1 Answer

0 votes
import Foundation

// Example: left = 2, right = 8
// Explanation: F(2) + F(3) + F(4) + F(5) + F(6) + F(7) + F(8)  = 1 + 2 + 3 + 5 + 8 + 13 + 21 = 53

// Function to compute Fibonacci numbers up to n
func fibonacci(_ n: Int) -> UInt64 {
    if n == 0 { return 0 }
    if n == 1 { return 1 }

    var prev: UInt64 = 0
    var curr: UInt64 = 1

    for _ in 2...n {
        let next = prev + curr
        prev = curr
        curr = next
    }

    return curr
}

// Function to calculate sum of Fibonacci numbers from index L to R (inclusive)
func sumFibonacciRange(_ L: Int, _ R: Int) -> UInt64 {
    // If the range is invalid (e.g., L > R), return 0
    if L > R { return 0 }

    /*
      Mathematical identity:
      Sum(F_L + F_(L+1) + ... + F_R) = F_(R+2) - F_(L+1)

      Explanation:
      - The sum of the first n Fibonacci numbers is F_(n+2) - 1.
      - So, the sum from F_L to F_R can be derived by subtracting:
          (sum of first R terms) - (sum of first (L-1) terms)
        = (F_(R+2) - 1) - (F_(L+1) - 1)
        = F_(R+2) - F_(L+1)
    */

    return fibonacci(R + 2) - fibonacci(L + 1)
}

// Main program
let left = 2
let right = 8

let result = sumFibonacciRange(left, right)

print("Sum of Fibonacci numbers from index \(left) to \(right) = \(result)")



/*
run:

Sum of Fibonacci numbers from index 2 to 8 = 53

*/

 



answered 1 day ago by avibootz
...